Additives enhancing the catalytic properties of lipase from Burkholderia cepacia immobilized on mixed-function-grafted mesoporous silica gel.
نویسندگان
چکیده
Effects of various additives on the lipase from Burkholderia cepacia (BcL) immobilized on mixed-function-grafted mesoporous silica gel support by hydrophobic adsorption and covalent attachment were investigated. Catalytic properties of the immobilized biocatalysts were characterized in kinetic resolution of racemic 1-phenylethanol (rac-1a) and 1-(thiophen-2-yl)ethan-1-ol (rac-1b). Screening of more than 40 additives showed significantly enhanced productivity of immobilized BcL with several additives such as PEGs, oleic acid and polyvinyl alcohol. Effects of substrate concentration and temperature between 0-100 °C on kinetic resolution of rac-1a were studied with the best adsorbed BcLs containing PEG 20 k or PVA 18-88 additives in continuous-flow packed-bed reactor. The optimum temperature of lipase activity for BcL co-immobilized with PEG 20k found at around 30 °C determined in the continuous-flow system increased remarkably to around 80 °C for BcL co-immobilized with PVA 18-88.
منابع مشابه
Screening of immobilization method in aerogel matrix in the presence of protic ionic liquid
Aerogel and xerogel are formed via hydrolysis and polycondensation reactions of silica precursors, such as tetraethylorthosilicate (TEOS), always careful not to cause collapse, reduction in surface area and pore size. Several studies shown the use sol-gel entrapment possesses a number of desirable attributes, as the enzyme is physically entrapped in a rigid glass framework that permitted stabil...
متن کاملLipase Immobilized into Novel GPTMS: TMOS Derived Sol-Gels and Its Application for Biodiesel Production from Waste Oil
In this essay, lipase from Burkholderia cepacia was immobilized into 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) derived sol-gels. GPTMS:TMOS molar ratio of 1:3 was found to yield the best result. The morphological characteristics were investigated based on SEM and BET analysis. Sample mean pore diameter was 39.1 nm, it had a specific surface area of 60 m2/g prior to...
متن کاملApplication of a Burkholderia cepacia lipase-immobilized silica monolith to batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil
BACKGROUND The enzymatic production of biodiesel through alcoholysis of triglycerides has become more attractive because it shows potential in overcoming the drawbacks of chemical processes. In this study, we investigate the production of biodiesel from crude, non-edible Jatropha oil and methanol to characterize Burkholderia cepacia lipase immobilized in an n-butyl-substituted hydrophobic silic...
متن کاملSynthesis and Characteristics of Mesoporous Sol-gels for Lipase Immobilization
Enzyme cost is the major problem for industrial scale application. Immobilization is a promising approach to moderate the enzyme cost factor and increase its stability and activity. In this study, sol-gel method was used to prepare the immobilization platform and entrapped lipase as one of the most used enzyme in dairy processing, cosmetics and pharmaceutical industries. Lipase from Candida rug...
متن کاملPhysico-chemical, Spectroscopical and Thermal Characterization of Biodiesel Obtained by Enzymatic Route as a Tool to Select the Most Efficient Immobilized Lipase
Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 19 7 شماره
صفحات -
تاریخ انتشار 2014